非参数统计名词解释?非参数检验的优缺点?
非参数统计名词解释?
非参数统计是指统计总体分布形式未知或虽已知却不能用有限个参数刻画的统计问题。在多数场合下,与参数问题界线清楚,只在少数情况下会因为各人出发点不同而有不同看法。非参数方法有拟合优度检验、次序统计量、U统计量、秩统计量与秩方法、置换检验、非参数回归与判别等等。非参数方法并非绝对只能解决非参数问题,有些也可用于典型的参数统计问题。

非参数统计方法无法依赖总体的具体分布形式,构造的统计量常与具体分布无关,故又称非参数方法为自由分布方法。这样,非参数方法的性能对分布的实际形式如何并不敏感,即非参数方法常具较好的稳健性。非参数方法需要考虑在约束条件十分宽松的情况下使用,有可能导致效率的下降。非参数统计难以建立小样本理论,基本属于大样本理论的内容。非参数统计形成于20世纪40年代,已成为一个体系庞大、理论精深且富有实用价值的统计分支。
非参数检验的优缺点?
优点:(1)对总体分布未做出任何假定,因此适用于任何分布的资料。如严重偏态分布、分布不明的资料、等级资料或末端无确定数值的资料。(2)易于收集资料、统计分析比较简便。
缺点:不直接分析原始测量值,从而有可能会降低它的检验效率。满足参数检验要求的资料分析时应首选参数检验方法。不满足参数检验要求的资料应选非参数检验。
方差分析和非参数检验有什么区别?
方差分析又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
非参数检验是统计分析方法的重要组成部分,它与参数检验共同构成统计推断的基本内容。非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
版权声明
本文仅代表作者观点,不代表木答案立场。
