什么是计量经济学?经济计量方向专业怎么样?

文化 2年前 阅读:16 评论:0
  1. 什么是计量经济学?
  2. 经济计量方向专业怎么样?
  3. 计量经济学是什么能做什么有什么意义?

什么是计量经济学?

计量经济学(econometrics),是运用概率统计方法对经济变量之间的(因果)关系进行定量分析的科学。

什么是计量经济学?经济计量方向专业怎么样?

由于实验数据的缺乏,计量经济学常常不足以确定经济变量之间的因果关系。

  计量经济学是以一定的经济理论和统计资料为基础,运用数学、统计学方法与电脑技术,以建立经济计量模型为主要手段,定量分析研究具有随机性特性的经济变量关系。主要内容包括理论计量经济学和应用经济计量学。理论经济计量学主要研究如何运用、改造和发展数理统计的方法,使之成为随机经济关系测定的特殊方法。应用计量经济学是在一定的经济理论的指导下,以反映事实的统计数据为依据,用经济计量方法研究经济数学模型的实用化或实证经济规律。  计量经济学(英文:Econometrics),是以数理经济学和数理统计学为方法论基础,对于经济问题试图对理论上的数量接近和经验(实证)上的数量接近这两者进行综合而产生的经济学分支。  该分支的产生,使得经济学对于经济现象从以往只能定性研究,扩展到同时可以进行定量分析的新阶段。  与一般的数学方法相比,计量经济学方法有十分重要的特点和意义:  研究对象发生了较大变化。即从研究确定性问题转向非确定性问题,其对象的性质和意义将发生巨大的变化。因此,在方法的思路上、方法的性质上和方法的结果上,都将出现全新的变化。  研究方法发生根本变化。计量经济学方法的基础是概率论和数理统计,是一种新的数学形式。学习中要十分注意其基本概念和方法思路的理解和把握,要充分认识其方法与其它数学方法的根本不同之处。  研究的结果发生了变化。我们应该知道,计量经济学模型的结论是概率意义上的,也可以说是不太确定的。但真正要理解其不确定性的含义,并不那么简单,学习中需要始终关注这一点。理论计量经济学和应用‎计量经济学 理论计量经济学(Theoretical Econometrics)以介绍、研究计量经济学的理论与方法为主要内容,侧重于理论与方法的数学证明与推导,与数理统计联系极为密切。理论计量经济学除了介绍计量经济学模型的数学理论基础和普遍应用的计量经济学模型的参数估计方法与检验方法外,还研究特殊模型的估计方法与检验模型。  应用‎计量经济学(Applied Econometrics)则以建立与应用计量经济学模型为主要内容,强调应用模型的经济学和经济统计学基础,侧重于建立与应用模型过程中实际问题的处理。

经济计量方向专业怎么样?

专业就业情况很好,学的知识兼顾软件硬件,而且鼓励参加各类竞赛。一般多数投递的为杭州本地公司,如果做软件的话,一般远方,海康,大华,测试岗位或技术支持岗位。本科起薪4000-6000不等,具体还是看个人的职业规划。

关于计量经济学就业方向:当前的就业行情非常稀少,研究、就业形势、发展前景都是很可观的,所以随着经济的发展和控制经济的迅速发展,对于金融专业人才尤其是与企业的需求量是比较大的,具有经济实力的学生毕业之后从事经济学专业的将来就业S场也是比较吃香的,收入也是很可观的。

答:1,经济计量方向专业挺好的。

2,计量经济学在各个高校都很看重,本科生未来做不错的工作还是很不错的,毕业以后,就可以成为金融机构、基金公司、银行、保险公司等金融机构和企业。

计量经济学是什么能做什么有什么意义?

随机扰动项在计量经济学模型中占据特别重要的地位,也是计量经济学模型区别于其它经济数学模型的主要特征。

将影响被解释变量的因素集进行有效分解,无数非显著因素对被解释变量的影响用一个随机扰动项(stochastic disturbance term)表示,并引入模型。显然,随机扰动项具有源生性。在基于随机抽样的截面数据的经典计量经济学模型中,这个源生的随机扰动项满足Gauss假设和服从正态分布。在确定性模型中引入随机扰动,并不是为了掩盖确定性模型的不足之处。因此,如果所谓的未被解释的随机扰动并不是真正的不能被解释的因素,模型就是不适当的。牢记这一点对计量经济学是非常重要的。统计推断的理论不像确定性理论那样,会被仅仅一个不符实际的观察否定。引入随机要素后,对预期结果的描述从确切的表述转化为可能性的描述,除非有占优证据(占优本身则是很难清楚界定的),很难否定随机模型。当然,如果未被解释的随机扰动并不是真正的不能被解释的因素,即使这样的模型难以被否定,也是建模者自欺欺人。不幸的是,Greene的担忧在很多情况下成了现实:在很多计量分析中,随机误差项成了确定性模型不足之处的遮羞布。在大部分计量经济学教科书中,在第一次引入随机扰动项的概念时,都将它定义为“被解释变量观测值与它的期望值之间的离差”,并且将它与随机误差项(stochastic error term)等同。一个“源生”的随机扰动项变成了一个“衍生”的误差。而且在解释它的具体内容时,一般都在“无数非显著因素对被解释变量的影响”之外,加上诸如“变量观测值的观测误差的影响”、“模型关系的设定误差的影响”等。将“源生”的随机扰动变成“衍生”的误差,有许多理由可以为此辩解。如果不对数据生成过程的理论结构作出假定,即进行模型总体设定,就无从开始模型研究。但不幸的是,相对于物理学,经济学家对经济现实所知较少,模型总体被研究者有限的知识所确定,因此误差在所难免,只能将总体原型方程的误差项设定为衍生性的。问题在于,关于随机扰动项的Gauss假设,以及一般未包括于Gauss假设之中的正态性假设,都是基于“源生”的随机扰动而成立的。如果存在模型设定误差、变量观测误差等确定性误差,并将它们归入“随机误差项”,那么它很难满足这些基本假设,进而进行的统计推断就缺少了基础。补救的方法是检验,对于实际应用模型的随机误差项进行是否满足基本假设的检验,其中最重要的是正态性检验。但是,在实际上,人们最容易忽视的正是最重要的是正态性检验。为什么?一方面是主观上的,认为正态性是由中心极限定理所保证的,无须检验。另一方面是客观上的,如果进行了正态性检验,而检验表明确实不满足正态性假设,又能怎么样?要么放弃研究,要么视而不见。

版权声明

本文仅代表作者观点,不代表木答案立场。

网友评论